こしあん
2019-10-20

TensorFlow2.0で訓練の途中に学習率を変える方法


8.9k{icon} {views}


TensorFlow2.0で訓練の途中に学習率を変える方法を、Keras APIと訓練ループを自分で書くケースとで見ていきます。従来のKerasではLearning Rate Schedulerを使いましたが、TF2.0ではどうすればいいでしょうか?

Keras APIの場合

従来どおりLearning Rate Schedulerを使います。MNISTで見てみましょう。

import tensorflow as tf
import tensorflow.keras.layers as layers
import numpy as np

def create_model():
    inputs = layers.Input((784,))
    x = layers.Dense(128, activation="relu")(inputs)
    x = layers.Dense(64, activation="relu")(x)
    x = layers.Dense(10, activation="softmax")(x)
    return tf.keras.models.Model(inputs, x)

def load_data():
    (X_train, y_train), (X_test, y_test) = tf.keras.datasets.mnist.load_data()
    X_train = X_train.astype(np.float32).reshape(-1, 784) / 255.0
    X_test = X_test.astype(np.float32).reshape(-1, 784) / 255.0
    return (X_train, y_train), (X_test, y_test)

def main_keras():
    (X_train, y_train), (X_test, y_test) = load_data()
    model = create_model()
    model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.1),
                  loss=tf.keras.losses.SparseCategoricalCrossentropy(),
                  metrics=[tf.keras.metrics.SparseCategoricalAccuracy()])

    # Learning Rate Schedulerに食わせるための関数
    def lr_scheduler(epoch):
        if epoch <= 5: return 0.1
        else: return 1e-8

    lr_callback = tf.keras.callbacks.LearningRateScheduler(lr_scheduler)
    model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=10, batch_size=128,
              callbacks=[lr_callback])

lr_schedulerが学習率の変更を定義する関数です。ここでは6エポックまでが0.1、7エポックからが1e-8(極めて小さい値)としています。コールバックなので、エポックの終わりに呼び出されることに注意しましょう。

Train on 60000 samples, validate on 10000 samples
Epoch 1/10
60000/60000 [==============================] - 1s 16us/sample - loss: 0.4461 - sparse_categorical_accuracy: 0.8739 - val_loss: 0.2352 - val_sparse_categorical_accuracy: 0.9305
Epoch 2/10
60000/60000 [==============================] - 1s 11us/sample - loss: 0.2117 - sparse_categorical_accuracy: 0.9388 - val_loss: 0.2101 - val_sparse_categorical_accuracy: 0.9351
Epoch 3/10
60000/60000 [==============================] - 1s 11us/sample - loss: 0.1603 - sparse_categorical_accuracy: 0.9533 - val_loss: 0.1375 - val_sparse_categorical_accuracy: 0.9576
Epoch 4/10
60000/60000 [==============================] - 1s 11us/sample - loss: 0.1301 - sparse_categorical_accuracy: 0.9617 - val_loss: 0.1198 - val_sparse_categorical_accuracy: 0.9630
Epoch 5/10
60000/60000 [==============================] - 1s 11us/sample - loss: 0.1088 - sparse_categorical_accuracy: 0.9683 - val_loss: 0.1152 - val_sparse_categorical_accuracy: 0.9644
Epoch 6/10
60000/60000 [==============================] - 1s 11us/sample - loss: 0.0933 - sparse_categorical_accuracy: 0.9724 - val_loss: 0.0957 - val_sparse_categorical_accuracy: 0.9681
Epoch 7/10
60000/60000 [==============================] - 1s 11us/sample - loss: 0.0778 - sparse_categorical_accuracy: 0.9775 - val_loss: 0.0957 - val_sparse_categorical_accuracy: 0.9681
Epoch 8/10
60000/60000 [==============================] - 1s 11us/sample - loss: 0.0778 - sparse_categorical_accuracy: 0.9775 - val_loss: 0.0957 - val_sparse_categorical_accuracy: 0.9681
Epoch 9/10
60000/60000 [==============================] - 1s 11us/sample - loss: 0.0778 - sparse_categorical_accuracy: 0.9775 - val_loss: 0.0957 - val_sparse_categorical_accuracy: 0.9681
Epoch 10/10
60000/60000 [==============================] - 1s 11us/sample - loss: 0.0778 - sparse_categorical_accuracy: 0.9775 - val_loss: 0.0957 - val_sparse_categorical_accuracy: 0.9681

出力はこの通りです。7エポックからほとんど損失が下がっていないのがわかります。これは学習率を極端に小さい値に変更したためです。

訓練ループを書く場合

オプティマイザのlr属性に代入してOKです。TPUのような分散訓練でも正常に動作するようです。

def main_train_loop():
    (X_train, y_train), (X_test, y_test) = load_data()

    trainset = tf.data.Dataset.from_tensor_slices((X_train, y_train))
    trainset = trainset.shuffle(X_train.shape[0]).batch(128)

    testset = tf.data.Dataset.from_tensor_slices((X_test, y_test))
    testset = testset.batch(128)

    model = create_model()
    optim = tf.keras.optimizers.SGD(lr=0.1)
    loss_func = tf.keras.losses.SparseCategoricalCrossentropy()
    acc = tf.keras.metrics.SparseCategoricalAccuracy()

    @tf.function
    def train_on_batch(X, y_true):
        with tf.GradientTape() as tape:
            y_pred = model(X, training=True)
            loss = loss_func(y_true, y_pred)
        grad = tape.gradient(loss, model.trainable_weights)
        optim.apply_gradients(zip(grad, model.trainable_weights))
        acc.update_state(y_true, y_pred)
        return loss

    @tf.function
    def validation_on_batch(X, y_true):
        y_pred = model(X, training=False)
        loss = loss_func(y_true, y_pred)
        acc.update_state(y_true, y_pred)
        return loss

    for epoch in range(10):
        acc.reset_states()
        losses = []
        for X, y in trainset:
            losses.append(train_on_batch(X, y).numpy())
        train_loss, train_acc = np.mean(np.array(losses)), acc.result().numpy()

        acc.reset_states()
        losses = []
        for X, y in testset:
            losses.append(validation_on_batch(X, y).numpy())
        val_loss, val_acc = np.mean(np.array(losses)), acc.result().numpy()
        print(f"Epoch = {epoch+1}, train_loss = {train_loss:.04}, train_acc = {train_loss:.04}, " +
              f"val_loss = {val_loss:.04}, val_acc={val_acc:.04}")

        # change learning rate
        if epoch >= 5: optim.lr = 1e-8

出力は次のようになります。

Epoch = 1, train_loss = 0.4358, train_acc = 0.4358, val_loss = 0.2325, val_acc=0.9338
Epoch = 2, train_loss = 0.2066, train_acc = 0.2066, val_loss = 0.1756, val_acc=0.9491
Epoch = 3, train_loss = 0.1546, train_acc = 0.1546, val_loss = 0.1369, val_acc=0.9598
Epoch = 4, train_loss = 0.1235, train_acc = 0.1235, val_loss = 0.1263, val_acc=0.9605
Epoch = 5, train_loss = 0.1033, train_acc = 0.1033, val_loss = 0.1058, val_acc=0.9681
Epoch = 6, train_loss = 0.08812, train_acc = 0.08812, val_loss = 0.1023, val_acc=0.9686
Epoch = 7, train_loss = 0.07745, train_acc = 0.07745, val_loss = 0.1023, val_acc=0.9686
Epoch = 8, train_loss = 0.07747, train_acc = 0.07747, val_loss = 0.1023, val_acc=0.9686
Epoch = 9, train_loss = 0.07746, train_acc = 0.07746, val_loss = 0.1023, val_acc=0.9686
Epoch = 10, train_loss = 0.07744, train_acc = 0.07744, val_loss = 0.1023, val_acc=0.9686

Keras APIと同じように学習率が変更できているのが確認できます。

まとめ

  • Keras APIの場合は、従来どおりにLearning Rate Schedulerを使う
  • 訓練ループを自分で書く場合は、オプティマイザのlrに直接変更後の値を代入して良さそう


Shikoan's ML Blogの中の人が運営しているサークル「じゅ~しぃ~すくりぷと」の本のご案内

技術書コーナー

北海道の駅巡りコーナー


Add a Comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です