スタイル変換のStyle Lossとは何をやっているか
スタイル変換やImage to Imageの損失関数で使われる・Style Lossの実装を詳しく見ていきます。Style Lossの計算で用いているグラム行列の計算方法をTensorFlowで考えます。 Style L […]...
データのお気持ちを考えながらData Augmentationする
Data Augmentationの「なぜ?」に注目しながら、エラー分析をしてCIFAR-10の精度向上を目指します。その結果、オレオレAugmentationながら、Wide ResNetで97.3%という、Auto […]...
TPUで学習率減衰させる方法
TPUで学習率減衰したいが、TensorFlowのオプティマイザーを使うべきか、tf.kerasのオプティマイザーを使うべきか、あるいはKerasのオプティマイザーを使うべきか非常にややこしいことがあります。TPUで学習 […]...
Affinity LossをCIFAR-10で精度を求めてひたすら頑張った話
不均衡データに対して有効性があると言われている損失関数「Affinity loss」をCIFAR-10で精度を出すためにひたすら頑張った、というひたすら泥臭い話。条件10個試したらやっと精度を出すためのコツみたいなのが見 […]...
PCA Color Augmentationを拡張してTensorFlow/Keras向けに実装した
PCA Color AugmentationはAlexNetの論文に示された画像向けのData Augmentationですが、画像用だけではなく、テンソルの固有値分解をすることで構造化データに対しても使えるようにしてみ […]...
tensorflow.kerasでKeras方式のhdf5で重みを保存する方法
従来のKerasで係数を保存すると「hdf5」形式で保存されたのですが、TPU環境などでTensorFlowのKerasAPIを使うと、TensorFlow形式のチェックポイントまるごと保存で互換性の面で困ったことがおき […]...