こしあん
2019-02-18

TPUでも大きなバッチサイズに対して精度を出す

Pocket
LINEで送る
Delicious にシェア

2k{icon} {views}



TPUでは大きなバッチサイズを適用することが訓練の高速化につながりますが、これは精度と引き換えになることがあります。大きなバッチサイズでも精度を出す方法を論文をもとに調べてみました。

背景

Qiitaに書いたGoogle Brainの論文「学習率を落とすな、バッチサイズを増やせ」を読むの続き。自分でも調べてみました。

実験

CIFAR-10で実験、10層のレイヤーのネットワークを作り以下の条件で調べる。オプティマイザーはモメンタム(特に断りなければ係数0.9)でGoogle ColabのTPUで調べました。すべて250エポック訓練させます。

  1. バッチサイズを128、初期学習率を0.1として、100、150、200エポックで学習率を1/5ずつ減衰(baseline)。
  2. バッチサイズを128、初期学習率を0.1として、100、150、200エポックでバッチサイズを5倍ずつ増やす。128→640→3200→16000となる(increase batch size
  3. バッチサイズを640、初期学習率を0.1、モメンタム係数を0.98として、100、150、200エポックで学習率を1/5ずつ減衰(increase momentum
  4. バッチサイズを640、初期学習率を0.5として、100、150、200エポックで学習率を1/5ずつ減衰

理論的には、ノイズスケールはすべて一緒で、

  • 1と2の学習曲線は一緒になるはず
  • 3は1,2と比べると、モメンタムの係数を増やしているので若干テスト精度が落ちるはず
  • 4は3との比較用で、仮に「初期の学習率」を上げた場合、精度の落ち方は3と比べてどのぐらいなのか

ということを確認していく。

コード

結果

縦軸はValidationのエラーレートで、横軸はエポック数です

考察

  • 1と2の学習曲線は一緒?→一緒、つまり学習率を下げることとバッチサイズを上げることは同じ
  • モメンタムの係数を上げた3場合は?→だいたい学習曲線は一緒に見えるが、やはりテスト精度は下がっている
  • モメンタム係数ではなく学習率を上げると?(4の場合)→テスト精度の落ち方がややマイルドになる。ただしこれは元の学習率によりけりなので、必ずしもこうなるとは限らない。

ほぼ論文の実験の通りの結果になりました。よりわかったことは、バッチサイズを上げる前提でいじる優先順位は、初期学習率>>モメンタム係数で、初期学習率を上げるとテスト精度が大きく下がってしまうケースではモメンタム係数を上げてみるというところではないでしょうか。



Shikoan's ML Blogの中の人が運営しているサークル「じゅ~しぃ~すくりぷと」の本のご案内

技術書コーナー

【新刊】インフィニティNumPy――配列の初期化から、ゲームの戦闘、静止画や動画作成までの221問

「本当の実装力を身につける」ための221本ノック――
機械学習(ML)で避けて通れない数値計算ライブラリ・NumPyを、自在に活用できるようになろう。「できる」ための体系的な理解を目指します。基礎から丁寧に解説し、ディープラーニング(DL)の難しいモデルで遭遇する、NumPyの黒魔術もカバー。初心者から経験者・上級者まで楽しめる一冊です。問題を解き終わったとき、MLやDLなどの発展分野にスムーズに入っていけるでしょう。

本書の大きな特徴として、Pythonの本でありがちな「NumPyとML・DLの結合を外した」点があります。NumPyを理解するのに、MLまで理解するのは負担が大きいです。本書ではあえてこれらの内容を書いていません。行列やテンソルの理解に役立つ「従来の画像処理」をNumPyベースで深く解説・実装していきます。

しかし、問題の多くは、DLの実装で頻出の関数・処理を重点的に取り上げています。経験者なら思わず「あー」となるでしょう。関数丸暗記では自分で実装できません。「覚える関数は最小限、できる内容は無限大」の世界をぜひ体験してみてください。画像編集ソフトの処理をNumPyベースで実装する楽しさがわかるでしょう。※紙の本は電子版の特典つき

モザイク除去から学ぶ 最先端のディープラーニング

「誰もが夢見るモザイク除去」を起点として、機械学習・ディープラーニングの基本をはじめ、GAN(敵対的生成ネットワーク)の基本や発展型、ICCV, CVPR, ECCVといった国際学会の最新論文をカバーしていく本です。
ディープラーニングの研究は発展が目覚ましく、特にGANの発展型は市販の本でほとんどカバーされていない内容です。英語の原著論文を著者がコードに落とし込み、実装を踏まえながら丁寧に解説していきます。
また、本コードは全てTensorFlow2.0(Keras)に対応し、Googleの開発した新しい機械学習向け計算デバイス・TPU(Tensor Processing Unit)をフル活用しています。Google Colaboratoryを用いた環境構築不要の演習問題もあるため、読者自ら手を動かしながら理解を深めていくことができます。

AI、機械学習、ディープラーニングの最新事情、奥深いGANの世界を知りたい方にとってぜひ手にとっていただきたい一冊となっています。持ち運びに便利な電子書籍のDLコードが付属しています。

「おもしろ同人誌バザールオンライン」で紹介されました!(14:03~) https://youtu.be/gaXkTj7T79Y?t=843

まとめURL:https://github.com/koshian2/MosaicDeeplearningBook
A4 全195ページ、カラー12ページ / 2020年3月発行

Shikoan's ML Blog -Vol.1/2-

累計100万PV超の人気ブログが待望の電子化! このブログが電子書籍になって読みやすくなりました!

・1章完結のオムニバス形式
・機械学習の基本からマニアックなネタまで
・どこから読んでもOK
・何巻から読んでもOK

・短いものは2ページ、長いものは20ページ超のものも…
・通勤・通学の短い時間でもすぐ読める!
・読むのに便利な「しおり」機能つき

・全巻はA5サイズでたっぷりの「200ページオーバー」
・1冊にたっぷり30本収録。1本あたり18.3円の圧倒的コストパフォーマンス!
・文庫本感覚でお楽しみください

Vol.1 電子550円
Vol.2 電子550円

北海道の駅巡りコーナー

日高本線 車なし全駅巡り

ローカル線や秘境駅、マニアックな駅に興味のある方におすすめ! 2021年に大半区間が廃線になる、北海道の日高本線の全区間・全29駅(苫小牧~様似)を記録した本です。マイカーを使わずに、公共交通機関(バス)と徒歩のみで全駅訪問を行いました。日高本線が延伸する計画のあった、襟裳岬まで様似から足を伸ばしています。代行バスと路線バスの織り成す極限の時刻表ゲームと、絶海の太平洋と馬に囲まれた日高路、日高の隠れたグルメを是非たっぷり堪能してください。A4・フルカラー・192ページのたっぷりのボリュームで、あなたも旅行気分を漫喫できること待ったなし!

見どころ:日高本線被災区間(大狩部、慶能舞川橋梁、清畠~豊郷) / 牧場に囲まれた絵笛駅 / 窓口のあっただるま駅・荻伏駅 / 汐見の戦争遺跡のトーチカ / 新冠温泉、三石温泉 / 襟裳岬

A4 全192ページフルカラー / 2020年11月発行


Pocket
LINEで送る
Delicious にシェア

Add a Comment

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です