こしあん
2019-05-06

TensorFlow Data Validationを使ったお手軽で強力な探索的データ解析

Pocket
LINEで送る


特にテーブルデータで、実際の分析に入る前に欠損値やデータの分布の把握といった、探索的データ解析(EDA)というのは重要なプロセスになります。TensorFlow Data Validationというツールを使うとそれがたった数行で簡単にできます。その方法を紹介します。

探索的データ解析(EDA)とは

欠損値や外れ値、値の分布などを調べること。これによって適切な前処理を選んでいくための重要なプロセス。Kaggleのテーブルコンペではほぼ必ずといっていいほどEDAのカーネルがあります。

つらいとこ

コードがめんどい。たかが前処理選ぶためのヒストグラムを書くのにいちいちコード書きたくない。いい感じに表形式でプロットするのをずばーっとやりたい。

TensorFlow Data Validation

TensorFlow Data Validation(TFDV)というのを使ってみましょう。ただし、Windows非対応(Ubuntu、MacOSのみ対応)なのでColab環境で行います。

インストール

インストールはpipから一発です。

!pip install tensorflow-data-validation

インストールが終わったら再起動を促すメッセージが表示されるので、ランタイムを再起動してみましょう。

タイタニックのデータを見てみる

おなじみのタイタニックのデータをTensorFlow Data Validationで見てみましょう。こちらのデータを使います。

データのダウンロード

wgetでデータをコピーします

!wget https://raw.githubusercontent.com/datasciencedojo/datasets/master/titanic.csv

インポート

import tensorflow_data_validation as tfdv

統計量の可視化

たった2行でできます。

stats = tfdv.generate_statistics_from_csv("titanic.csv")
tfdv.visualize_statistics(stats)

CSVをそのままvisualize_statisticsに読ませることはできないので、TFDV用のstatisticsにコンバートしています。内部的にはスキーマーの推定などをやっているそうです。

TFDVの出力

TFDVの可視化にはNumeric Features(数値変数)と、Categorical Features(カテゴリー変数)に自動分類されます。それぞれどのような出力になるか見ていきます。

数値型の変数

1.デフォルトのプロット

たった2行の割にここまで出してくれるのはすごい。見方は次の通りです。

  • count: 有効データの数。欠損値があると減る
  • missing : 欠損値の数。ここの数が0より大きいと欠損値対策する必要あり。
  • mean : 平均
  • std dev : 標準偏差
  • zeros : ゼロの割合
  • min : 最小値
  • median : 中央値
  • max : 最大値

欠損値が有益な情報ですね。右のヒストグラムで変数の分布も見ることができます。また他には「Sort by」で変数のソートや、「Feature search」で変数のフィルタリングもできます。

2.クォンタイル表示

「Chart to show」を「Quantiles」にします。こうするとクォンタイル値が表示できます。

特にスケール調整する際に有効になりそうです。

3.logスケール表示

これは標準的な表示でもクォンタイル表示でもできますが、対数変換もできます。「log」ボタンにチェックを入れます。

変数別に、線形スケールがいいか、対数スケールがいいか検討することもできるでしょう。これを見ると、Fare(運賃)は対数変換したほうが良さそうな感じがします(特にNNでやる場合)。

カテゴリー変数

下のほうをスクロールしていくとカテゴリー変数が表示されます。数値型かカテゴリー型かはTFDVが勝手に判別してくれます。あくまで自動判定なので、名前みたいなユニークカラムがこちらに入っていることもあります。

Embarked(乗船港)にこんな偏りがあったのは驚きですね。ほとんどがサウサンプトンから乗船だったというのがわかります。

まとめ

TFDV(TensorFlow Data Validation)を使うとたった数行で探索的データ解析ができる。

これだけでもかなり強力なように思いますが、その他の情報は「参考」のところのサイトを見てください。外れ値検出やスキーマーの表示なんかもできます。

参考

一番上の記事がわかりやすいです。公式ドキュメントはある程度使ってから読まないと多分理解しづらいと思います。

Related Posts

TensorFlow/Kerasでグラム行列(テンソル)を計算する方法... TensorFlowで分散や共分散が絡む演算を定義していると、グラム行列を計算する必要が出てくることがあります。行列はまだよくてもテンソルのグラム行列はどう計算するでしょうか?今回はテンソルの共分散計算に行く前に、その前提のテンソルのグラム行列の計算から見ていきます。 グラム行列とは 名前は仰...
TensorFlow/Kerasでネットワーク内でData Augmentationする方法... NumpyでData Augmentationするのが遅かったり、書くの面倒だったりすることありますよね。今回はNumpy(CPU)ではなく、ニューラルネットワーク側(GPU、TPU)でAugmetationをする方法を見ていきます。 こんなイメージ Numpy(CPU)でやる場合 Num...
ディープラーニング=最小二乗法のどこがダメなのか解説する... あるニュース記事で、ディープラーニング=最小二乗法で三次関数なんていう「伝説の画像」が出回っていたので、それに対して突っ込みつつ、非線形関数という立場からディープラーニングの本当の表現の豊かさを見ていきたいと思います。 きっかけ ある画像が出回っていた。日経新聞の解説らしい。 伝説の画像にな...
OpenCVで画像を歪ませる方法 PythonでOpenCVを使い画像を歪ませる方法を考えます。アフィン変換というちょっと直感的に理解しにくいことをしますが、慣れればそこまで難しくはありません。ディープラーニングのData Augmentationにも使えます。 OpenCVでのアフィン変換のイメージ アフィン変換というと、ま...
データのお気持ちを考えながらData Augmentationする... Data Augmentationの「なぜ?」に注目しながら、エラー分析をしてCIFAR-10の精度向上を目指します。その結果、オレオレAugmentationながら、Wide ResNetで97.3%という、Auto Augmentとほぼ同じ(-0.1%)精度を出すことができました。 (※すご...
Pocket
LINEで送る
Delicious にシェア

Add a Comment

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です