こしあん
2018-10-27

Kerasで複数のラベル(出力)があるモデルを訓練する

Pocket
LINEで送る
Delicious にシェア

11.9k{icon} {views}



Kerasで複数のラベル(出力)のあるモデルを訓練することを考えます。ここでの複数のラベルとは、あるラベルとそれに付随する情報が送られてきて、それを同時に損失関数で計算する例です。これを見ていきましょう。

問題設定

MNISTの分類で、ラベルが奇数のときだけ損失を評価し(categorical_crossentropy)、偶数のときは損失0として考える問題を想定します。

この実装方法以外にもやり方はあると思いますが、今回はいつもの(バッチサイズ, 10)の「どの数字を表すか」というラベルの横に、もう1列「奇数かどうかの」ラベルを作ります。次のようなイメージです。

今回作るラベルは(バッチサイズ, 11)のshapeになります。1~10列目はどの数字を表すかというOne-hotベクトル、11列目は奇数かどうかのベクトルになります。例えば、1という数字だった場合、2列目は1で1列目と3~10列目は0、11列目は奇数なので1となります。4という数字だった場合、5列目は1で1~4列目と6~10列目は0、11列目は偶数なので0となります。このようなラベルデータです。

もう少し一般的に考えると、この「奇数かどうか」というラベルは、ラベルを評価する際に付随する情報(条件)とも考えることができます。複数出力というと馴染みが薄いかもしれませんが、このように考えると意外と使うケースがあるのではないかと思います。

さて、このラベルの列数は11ですが、分類問題の出力ニューロン数は10なので、ラベルデータと予測値にデータ数のミスマッチを起こします。そこはカスタム損失関数を定義して処理します。具体的な実装をこれから見ていきます。

実装

モデルを作る

まずはモデルを作ります。今回は簡単な多層パーセプトロンとしました。これはラベルの種類が増えようが普通のMNISTの例と同じで、出力のニューロンは10となります。

from keras.layers import Dense, Input, Flatten
from keras.models import Model
from keras.datasets import mnist
from keras.utils import to_categorical
from keras.objectives import categorical_crossentropy
import numpy as np

def make_model():
    input = Input(shape=(28, 28))
    x = Flatten()(input)
    x = Dense(64, activation="relu")(x)
    x = Dense(10, activation="softmax")(x)

    return Model(input, x)

これはいつものモデルなので特にいいですね。

データのジェネレーター

データをモデルに流し込むジェネレーターも自作してみました。わかりづらかったら、yの行列を事前にフルバッチでnumpyベースで合体させても良いと思います。

def generator(X, y, batch_size, train):
    X_batch, y_batch = [], []
    indices = np.arange(X.shape[0])
    while True:
        if train:
            np.random.shuffle(indices)
        for i in range(len(indices) // batch_size):
            current_indices = indices[i*batch_size:(i+1)*batch_size]
            X_batch = X[current_indices] / 255.0
            y_batch_label = to_categorical(y[current_indices], num_classes=10)
            y_batch_is_odd = np.expand_dims(y[current_indices] % 2 == 1, axis=-1).astype(np.float32)
            y_batch = np.c_[y_batch_label, y_batch_is_odd]
            yield X_batch, y_batch

インデックスのベクトルを定義し、そのインデックスからスライスさせることでバッチを生成しています。訓練データを食わせる場合はシャッフルさせています。

複数ラベルの生成部分は「y_batch_labelとy_batch_is_odd」の部分です。keras.utilsの「to_categorical関数」を使って数字をone-hotな表現にしています。これは1~10列目に相当します。「y_batch_is_odd」は奇数かどうかを表すもので、True, Falseで帰ってきた値をfloatでキャストすることで1.0と0.0に変換しています。また、スライスだとランク1のテンソルになってしまうため、後の結合を考えて「np.expand_dims関数」でランク2に戻しています。そのあと、y_batchを列方向につなげることで(np.c_)データのジェネレーターが完成します。

ジェネレーターを作ることは必須ではないので、わかりづらかったら、y全体を結合するとかでもいいと思います。

損失関数の自作

ここは必須です。デフォルトの損失関数だと、出力ユニットの数とラベルデータの数が等しい場合しか想定していないのでエラーが出ます。つまり、損失関数の中で列方向のスライスをする必要があります。

def loss_function(y_true_combined, y_pred):
    y_true, is_odd = y_true_combined[:, :10], y_true_combined[:, 10]
    return categorical_crossentropy(y_true, y_pred) * is_odd

y_true_combinedという(バッチサイズ, 11)の形式で与えられるテンソルをスライスします。ちなみにy_predは(バッチサイズ, 10)の形式で返ってきます。スライスは基本的にはNumpyベースと変わりません。y_trueは(バッチサイズ, 10)という形式、is_oddは(バッチサイズ, )という形式にそれぞれなります。y_true_combinedはランク2であったのに、is_oddがランク1に落ちることがポイントですね。

次に、keras.objectivesのcategorical_crossentropyを使い、通常のMNISTの分類と同じ交差エントロピーを計算します。keras.backendにもcategorical_crossentropyの関数はありますが、objectivesのほうは計算結果のランクが入力のランク-1される(つまりこの場合はランク1で返ってくる)、backendのほうはランクが落ちない(今回は使いませんでしたがランク2で返ってくる)という違いがあります。今回はobjectivesの交差エントロピーを使っているので、is_oddとランク1のテンソル同士の積を計算しています。

Kerasの損失関数は基本的にはサンプル単位で返してあげればあとは勝手にやってくれる(サンプル単位で荷重をかけたりすることが想定されているそうです)ので、サンプル単位で集計したランク1のテンソルを返す実装でOKです。

訓練と評価

少し長めのコードになってしまいましたが、訓練とモデルの評価をします。今回のケースでは、偶数の場合は全く訓練されないので(偶数ではis_odd=0となり、どのような場合でも損失=0となり学習が進まないから)、偶数の場合は分類精度が極端に低くなることが想定されます。それを確認しています。

from sklearn.metrics import confusion_matrix, accuracy_score

def train_eval():
    (X, y), (_, _) = mnist.load_data()
    model = make_model()
    model.compile("adam", loss=loss_function)
    model.fit_generator(generator(X, y, 128, True), 60000//128, epochs=3)

    X_even, X_odd = X[y % 2 == 0], X[y % 2 == 1]
    y_true_even, y_true_odd = y[y % 2 == 0], y[y % 2 == 1]
    y_pred_even = np.argmax(model.predict(X_even), axis=1)
    y_pred_odd = np.argmax(model.predict(X_odd), axis=1)

    print("Even result")
    print("acc =", accuracy_score(y_true_even, y_pred_even))
    print(confusion_matrix(y_true_even, y_pred_even))
    print(np.bincount(y_true_even))
    print(np.bincount(y_pred_even))
    print()
    print("Odd result")
    print("acc =", accuracy_score(y_true_odd, y_pred_odd))
    print(confusion_matrix(y_true_odd, y_pred_odd))
    print(np.bincount(y_true_odd))
    print(np.bincount(y_pred_odd))

if __name__ == "__main__":
    train_eval()

偶数、奇数に対して、精度と混同行列、真の値と推定値の分布を調べています。それぞれSklearnの関数を使っています。

では結果を見てみましょう。

468/468 [==============================] - 1s 2ms/step - loss: 0.1372
Epoch 2/3
468/468 [==============================] - 1s 2ms/step - loss: 0.0562
Epoch 3/3
468/468 [==============================] - 1s 2ms/step - loss: 0.0416
Even result
acc = 0.0
[[   0    2    0  690    0 4431    0   69    0  731]
 [   0    0    0    0    0    0    0    0    0    0]
 [   0  910    0 4314    0  149    0  453    0  132]
 [   0    0    0    0    0    0    0    0    0    0]
 [   0   78    0   77    0  103    0  129    0 5455]
 [   0    0    0    0    0    0    0    0    0    0]
 [   0  309    0  725    0 3426    0   49    0 1409]
 [   0    0    0    0    0    0    0    0    0    0]
 [   0  416    0 3336    0 1112    0   43    0  944]
 [   0    0    0    0    0    0    0    0    0    0]]
[5923    0 5958    0 5842    0 5918    0 5851]
[   0 1715    0 9142    0 9221    0  743    0 8671]

Odd result
acc = 0.9790546741838206
[[6699   24    4    7    8]
 [  14 6049   21   24   23]
 [  12  149 5217    9   34]
 [  28   49   11 6082   95]
 [  20   59   19   29 5822]]
[   0 6742    0 6131    0 5421    0 6265    0 5949]
[   0 6773    0 6330    0 5272    0 6151    0 5982]

順調にLossが減って訓練が進んでいるものの、偶数の精度は0%となって、奇数の精度は約98%となりました。想定どおりの結果になったことを確認できました。

全体のコード

全体のコードをgistに上げました。

まとめ

複数のラベル(またはラベルに付随する条件)を訓練したいときは、あたかも1つのラベルのように大きなラベルデータに放り込み、損失関数を独自に定義し、損失関数内でスライスして計算するのと楽というのがわかりました。

全てがこのように簡単にできるとは限りませんが、自分は複数のラベルをサンプル単位で直交化させたほうが楽ではないかなと思います。

以上です。これができるとモデル構築の柔軟性が上がって様々な例に応用できるので、ぜひ活用してくださいね。



Shikoan's ML Blogの中の人が運営しているサークル「じゅ~しぃ~すくりぷと」の本のご案内

技術書コーナー

【新刊】インフィニティNumPy――配列の初期化から、ゲームの戦闘、静止画や動画作成までの221問

「本当の実装力を身につける」ための221本ノック――
機械学習(ML)で避けて通れない数値計算ライブラリ・NumPyを、自在に活用できるようになろう。「できる」ための体系的な理解を目指します。基礎から丁寧に解説し、ディープラーニング(DL)の難しいモデルで遭遇する、NumPyの黒魔術もカバー。初心者から経験者・上級者まで楽しめる一冊です。問題を解き終わったとき、MLやDLなどの発展分野にスムーズに入っていけるでしょう。

本書の大きな特徴として、Pythonの本でありがちな「NumPyとML・DLの結合を外した」点があります。NumPyを理解するのに、MLまで理解するのは負担が大きいです。本書ではあえてこれらの内容を書いていません。行列やテンソルの理解に役立つ「従来の画像処理」をNumPyベースで深く解説・実装していきます。

しかし、問題の多くは、DLの実装で頻出の関数・処理を重点的に取り上げています。経験者なら思わず「あー」となるでしょう。関数丸暗記では自分で実装できません。「覚える関数は最小限、できる内容は無限大」の世界をぜひ体験してみてください。画像編集ソフトの処理をNumPyベースで実装する楽しさがわかるでしょう。※紙の本は電子版の特典つき

モザイク除去から学ぶ 最先端のディープラーニング

「誰もが夢見るモザイク除去」を起点として、機械学習・ディープラーニングの基本をはじめ、GAN(敵対的生成ネットワーク)の基本や発展型、ICCV, CVPR, ECCVといった国際学会の最新論文をカバーしていく本です。
ディープラーニングの研究は発展が目覚ましく、特にGANの発展型は市販の本でほとんどカバーされていない内容です。英語の原著論文を著者がコードに落とし込み、実装を踏まえながら丁寧に解説していきます。
また、本コードは全てTensorFlow2.0(Keras)に対応し、Googleの開発した新しい機械学習向け計算デバイス・TPU(Tensor Processing Unit)をフル活用しています。Google Colaboratoryを用いた環境構築不要の演習問題もあるため、読者自ら手を動かしながら理解を深めていくことができます。

AI、機械学習、ディープラーニングの最新事情、奥深いGANの世界を知りたい方にとってぜひ手にとっていただきたい一冊となっています。持ち運びに便利な電子書籍のDLコードが付属しています。

「おもしろ同人誌バザールオンライン」で紹介されました!(14:03~) https://youtu.be/gaXkTj7T79Y?t=843

まとめURL:https://github.com/koshian2/MosaicDeeplearningBook
A4 全195ページ、カラー12ページ / 2020年3月発行

Shikoan's ML Blog -Vol.1/2-

累計100万PV超の人気ブログが待望の電子化! このブログが電子書籍になって読みやすくなりました!

・1章完結のオムニバス形式
・機械学習の基本からマニアックなネタまで
・どこから読んでもOK
・何巻から読んでもOK

・短いものは2ページ、長いものは20ページ超のものも…
・通勤・通学の短い時間でもすぐ読める!
・読むのに便利な「しおり」機能つき

・全巻はA5サイズでたっぷりの「200ページオーバー」
・1冊にたっぷり30本収録。1本あたり18.3円の圧倒的コストパフォーマンス!
・文庫本感覚でお楽しみください

Vol.1 電子550円
Vol.2 電子550円

北海道の駅巡りコーナー

日高本線 車なし全駅巡り

ローカル線や秘境駅、マニアックな駅に興味のある方におすすめ! 2021年に大半区間が廃線になる、北海道の日高本線の全区間・全29駅(苫小牧~様似)を記録した本です。マイカーを使わずに、公共交通機関(バス)と徒歩のみで全駅訪問を行いました。日高本線が延伸する計画のあった、襟裳岬まで様似から足を伸ばしています。代行バスと路線バスの織り成す極限の時刻表ゲームと、絶海の太平洋と馬に囲まれた日高路、日高の隠れたグルメを是非たっぷり堪能してください。A4・フルカラー・192ページのたっぷりのボリュームで、あなたも旅行気分を漫喫できること待ったなし!

見どころ:日高本線被災区間(大狩部、慶能舞川橋梁、清畠~豊郷) / 牧場に囲まれた絵笛駅 / 窓口のあっただるま駅・荻伏駅 / 汐見の戦争遺跡のトーチカ / 新冠温泉、三石温泉 / 襟裳岬

A4 全192ページフルカラー / 2020年11月発行


Pocket
LINEで送る
Delicious にシェア

Add a Comment

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です