こしあん
2019-01-12

TensorFlowで値のソートをする方法


TensorFlowでNumpyのnp.sortやnp.argsortのようなソートを行うことを考えます。一般にTensorFlowで値のソートというと、自動微分もあわさって難しいように思えますが、実はちゃんとソートできます。うまくやればKerasからも使うことができます。

tf.nn.top_k()を使う

tf.nn.top_k (tf.math.top_kも同じ)
https://www.tensorflow.org/api_docs/python/tf/math/top_k

本来この関数はImageNetなど、分類問題での「Top-5 Acuuracy」といった評価関数の計算に用いられるものです。「top_k」という名前がついていてわかりづらくなっていますが、内部的にやっているのはソートに他なりません。

入力次元=kの値ならただのソート

例えば、「入力次元=kの値」とすると、完全なソートになります。np.sort()とほぼ同じ感覚で使えます。

import numpy as np
import tensorflow as tf
import keras.backend as K

# 点数のソート
score = np.array([70,90,80,95], dtype=np.float32)
score_tensor = tf.Variable(score)
sorted = tf.nn.top_k(score_tensor, k=4).values

result = K.eval(sorted)
print(result)
# [95. 90. 80. 70.]

出力は降順となりますが、昇順で取りたければスライス([::-1])で取るか、「sorted=False」と指定します。ただし、「sorted=False」かつ入力次元=kの値の場合は、降順ソートのままの出力になってしまうバグがある(1.12.0時点)ので注意してください。スライスの場合は特に問題ないです。

ちなみにsortedの中身をvaluesではなくindicesとすると、“np.argsort()“`とほぼ同じになります。

# 点数のソート
score = np.array([70,90,80,95], dtype=np.float32)
score_tensor = tf.Variable(score)
sorted = tf.nn.top_k(score_tensor, k=4).indices

result = K.eval(sorted)
print(result)
#[3 1 2 0]

ちなみに、「.indices」や「.values」による指定をなくすとKerasのK.eval()で評価することができなくなります。

    return to_dense(x).eval(session=get_session())
AttributeError: 'TopKV2' object has no attribute 'eval'

Keras側からtf.nn.top_kを呼び出す際は、「.indices」や「.values」の指定をしたほうがいいかもしれません。TensorFlowで完結する場合は特に問題ないでしょう。

kの値を指定すると「ORDER BY desc~LIMIT k」に相当

SQLでよくやるやつ

score = np.array([70,90,80,95], dtype=np.float32)
score_tensor = tf.Variable(score)
sorted = tf.nn.top_k(score_tensor, k=2).values

result = K.eval(sorted)
print(result)
# [95. 90.]

うまくいきました。

行列に対してもできる

行列の場合もソートできます。最後の次元に対してソートを行います。

import numpy as np
import tensorflow as tf
import keras.backend as K

# 1行目が数学、2行目が英語
score = np.array([[70,90,80,95], [8,6,10,9]], dtype=np.float32)
score_tensor = tf.Variable(score)
sorted = tf.nn.top_k(score_tensor, k=3)

print(K.eval(sorted.indices))
#[[3 1 2]
# [2 3 0]]
print(K.eval(sorted.values))
#[[95. 90. 80.]
# [10.  9.  8.]]

教科別の得点(axis=1)でソートされているのがわかります。便利ですねこの関数。

Related Posts

Kerasで損失関数に複数の変数を渡す方法... Kerasで少し複雑なモデルを訓練させるときに、損失関数にy_true, y_pred以外の値を渡したいときがあります。クラスのインスタンス変数などでキャッシュさせることなく、ダイレクトに損失関数に複数の値を渡す方法を紹介します。 元ネタ:Passing additional arguments...
Kerasで複数のラベル(出力)があるモデルを訓練する... Kerasで複数のラベル(出力)のあるモデルを訓練することを考えます。ここでの複数のラベルとは、あるラベルとそれに付随する情報が送られてきて、それを同時に損失関数で計算する例です。これを見ていきましょう。 問題設定 MNISTの分類で、ラベルが奇数のときだけ損失を評価し(categorical...
Kerasでランドマーク検出用の損失関数を作る上でのポイント... ランドマーク検出やオブジェクト検出では、yに最初に物体やランドマークが存在する確率をおいて、それ以降に座標を配置するというようなデータ構造を取ります。その場合、カスタム損失関数を定義する必要が出てきますが、どのように定義するれば良いでしょうか。それを見ていきます。 Kerasの損失関数 分類問...
OpenCVで画像を歪ませる方法 PythonでOpenCVを使い画像を歪ませる方法を考えます。アフィン変換というちょっと直感的に理解しにくいことをしますが、慣れればそこまで難しくはありません。ディープラーニングのData Augmentationにも使えます。 OpenCVでのアフィン変換のイメージ アフィン変換というと、ま...
Chainerで画像の前処理やDataAugmentationをしたいときはDatasetMixin... Chainerにはデフォルトでランダムクロップや標準化といった、画像の前処理やDataAugmentation用の関数が用意されていません。別途のChainer CVというライブラリを使う方法もありますが、chainer.dataset.DatasetMixinを継承させて独自のデータ・セットを定...

Add a Comment

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です