こしあん
2019-01-12

TPUでアップサンプリングする際にエラーを出さない方法


画像処理をしているとUpsamplingが必要になることがあります。Keras/TensorFlowではUpsampling2Dというレイヤーを使ってアップサンプリングができますが、このレイヤーがTPUだとエラーを出すので解決法を探しました。自分でアップサンプリングレイヤーを定義するとうまく行ったので、それを見ていきます。

環境:TensorFlow v1.12.0

TPU使わないとうまくいく

例えば、今簡単な例として、shape=(8,1,1,1)の0~7の数字の配列を画像と見立てます。これを縦横2倍のアップサンプリングをして、shape=(8,2,2,1)という形に変形します。

KerasのUpsampling2Dレイヤーを使った実装ではこうでしょう。

import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras.models import Model
import numpy as np

def upsampling_model():
    input = layers.Input((1,1,1))
    x = layers.UpSampling2D(2)(input)
    return Model(input, x)

def upsampling_test():
    model = upsampling_model()

    X = np.arange(8).reshape(-1,1,1,1)
    y = model.predict(X)
    print(y.shape)

if __name__ == "__main__":
    upsampling_test()

これは実際うまく行って、出力のshapeは正しい値になります。

(8, 2, 2, 1)

UpSampling2DはTPUではうまくは行かない

ただこのUpsampling2Dを使った方法はTPUだとエラーを出します。TPUに変換する処理を含めたコードです。

import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras.models import Model
import tensorflow.keras.backend as K
from tensorflow.contrib.tpu.python.tpu import keras_support
import numpy as np
import os

def upsampling_model():
    input = layers.Input((1,1,1))
    x = layers.UpSampling2D(2)(input)
    return Model(input, x)

def upsampling_test():
    model = upsampling_model()
    # TPUモデルに変換するためにコンパイルが必要なのでこの値に意味はない
    model.compile(tf.train.GradientDescentOptimizer(0.1), "mean_squared_error")

    tpu_grpc_url = "grpc://"+os.environ["COLAB_TPU_ADDR"]
    tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(tpu_grpc_url)
    strategy = keras_support.TPUDistributionStrategy(tpu_cluster_resolver)
    model = tf.contrib.tpu.keras_to_tpu_model(model, strategy=strategy)

    X = np.arange(8).reshape(-1,1,1,1)
    y = model.predict(X)
    print(y.shape)

if __name__ == "__main__":
    upsampling_test()

途中コンパイルで適当なオプティマイザーや損失関数を与えていますが、これはTPUのモデルに変換するのにコンパイルが必要なので、この例では、コンパイルで指定した値は全く意味がありません。

ちなみにこのコードはコンパイル失敗します。

RuntimeError: Compilation failed: Compilation failure: Detected unsupported operations when trying to compile graph cluster_1_5423988494562430942[] on XLA_TPU_JIT: ResizeNearestNeighbor (No registered 'ResizeNearestNeighbor' OpKernel for XLA_TPU_JIT devices compatible with node {{node tpu_140457990329008/up_sampling2d_1/ResizeNearestNeighbor}} = ResizeNearestNeighbor[T=DT_FLOAT, align_corners=false, _device="/device:TPU_REPLICATED_CORE"](infeed-infer, tpu_140457990329008/up_sampling2d_1/mul)
    .  Registered:  device='CPU'; T in [DT_DOUBLE]
  device='CPU'; T in [DT_FLOAT]
  device='CPU'; T in [DT_BFLOAT16]
  device='CPU'; T in [DT_HALF]
  device='CPU'; T in [DT_INT8]
  device='CPU'; T in [DT_UINT8]
  device='CPU'; T in [DT_INT16]
  device='CPU'; T in [DT_UINT16]
  device='CPU'; T in [DT_INT32]
  device='CPU'; T in [DT_INT64]
){{node tpu_140457990329008/up_sampling2d_1/ResizeNearestNeighbor}}

どうもNearestNeighborのアップサンプリングのコンパイルが失敗するみたいですね。

NumpyでのNearestNeighbor法

さて、もっと簡単にNumpyでの例を振り返りましょう。以前こちらの記事で紹介した方法です。

Numpyだけでサクッと画像を拡大する方法
https://blog.shikoan.com/numpy-upsampling-image/

実はNumpyではForループを一切使わずにNearestNeighbor法の画像拡大をすることができます。repeatを2回かませる方法です。

image.repeat(2, axis=0).repeat(2, axis=1)

実はKerasのバックエンド関数に同様のrepeat関数があるため(K.repeat_elements())、このNumpyの方法をそのままTensorFlowに転用することができます。つまり、TensorFlow用のアップサンプリング用の関数を自分で書いてLambdaレイヤーでラップしてあげればOKです。

TPUで動く方法

こうしてみました。「upsampling2d_tpu」というのが自分で定義したアップサンプリング用の関数です。

import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras.models import Model
from tensorflow.contrib.tpu.python.tpu import keras_support
import tensorflow.keras.backend as K
import numpy as np
import os

def upsampling_model():
    input = layers.Input((1,1,1))
    x = layers.Lambda(upsampling2d_tpu, arguments={"scale":2})(input)
    return Model(input, x)

def upsampling2d_tpu(inputs, scale=2):
    x = K.repeat_elements(inputs, scale, axis=1)
    x = K.repeat_elements(x, scale, axis=2)
    return x

def upsampling_test():
    model = upsampling_model()
    # TPUモデルに変換するためにコンパイルが必要なのでこの値に意味はない
    model.compile(tf.train.GradientDescentOptimizer(0.1), "mean_squared_error")

    tpu_grpc_url = "grpc://"+os.environ["COLAB_TPU_ADDR"]
    tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(tpu_grpc_url)
    strategy = keras_support.TPUDistributionStrategy(tpu_cluster_resolver)
    model = tf.contrib.tpu.keras_to_tpu_model(model, strategy=strategy)

    X = np.arange(8).reshape(-1,1,1,1)
    y = model.predict(X)
    print(y.shape)

if __name__ == "__main__":
    upsampling_test()

これはうまくいきます

INFO:tensorflow:New input shapes; (re-)compiling: mode=infer (# of cores 8), [TensorSpec(shape=(1, 1, 1, 1), dtype=tf.float32, name='input_12_10')]
INFO:tensorflow:Overriding default placeholder.
INFO:tensorflow:Remapping placeholder for input_12
INFO:tensorflow:Started compiling
INFO:tensorflow:Finished compiling. Time elapsed: 0.20801544189453125 secs
INFO:tensorflow:Setting weights on TPU model.
(8, 2, 2, 1)

TPUでもちゃんとアップサンプリングを行うことができました。NearestNeighbor法での拡大でいいところに、わざわざConv2DTransposeなどのレイヤーをはさむ必要はなさそうです。

まとめ

TPUではどうもUpSampling2Dのコンパイルに失敗するっぽい(今後のバージョンで改善される可能性あり)。K.repeat_elementsなどの関数を使い、自分でアップサンプリングの処理を書くとエラーにならないよ、ということでした。

Related Posts

Pythonで画像のカラーヒストグラムを簡単に表示する方法... 画像で赤、緑、青の画素がどのような分布になっているかという「カラーヒストグラム」を見たいことがあります。しかしいざ探すとツールが少ないのです。Pythonならほんの数行で出せます。 PillowとPyplotでとてもお手軽 カラーヒストグラムの原理は単純で、縦横カラーチャンネルの画像を、カラー...
Kerasで転移学習用にレイヤー名とそのインデックスを調べる方法... Kerasで転移学習をするときに、学習済みモデルのレイヤーの名前と、そのインデックス(何番目にあるかということ)の対応を知りたいことがあります。その方法を解説します。 転移学習とは 転移学習とは、ImageNetなど何百万もの大量の画像で事前学習させたモデルを使い、それを「特徴量検出器」として...
ColabのTPUでNASNet Largeを訓練しようとして失敗した話... ColabのTPUはとてもメモリ容量が大きく、計算が速いのでモデルのパラメーターを多くしてもそこまでメモリオーバーor遅くなりません。ただし、あまりにモデルが深すぎると訓練の初期設定で失敗することがあります。NASNet Largeを訓練しようとして発生しました。これを見ていきます。 CIFAR...
Python(Numpy)で画像を水平反転する方法:Data Augmentation向け... OpenCVを使わずに単純に画像を左右反転(水平反転)する方法を考えます。ディープラーニングでデータのジェネレーターを自分で実装した場合、Data Augmentationを組み込む際にも必要になります。それを見ていきましょう。 左右反転自体は実は簡単 例えばNumpyの行列を左右反転させてみ...
Numpyだけでサクッと画像を拡大する方法... Numpyだけで画像をサクッと拡大する方法を紹介します。OpenCVやPillowを使うまでもないな、というようなときに便利な方法です。ニューラルネットワークでインプットのサイズを調整するときも使えます。 ただのNearest Neighbor法 拡大前の1ピクセルを1つの四角形と見立てて、拡...

Add a Comment

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です